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Summary 

A three-dimensional numerical program has been developed for simulation of heavy gas disper- 
sion. The k-e model with standard constants has been used for calculation of the diffusion coef- 
ficients where the effect of density gradients on the mixing process is accounted for by applying 
correction factors given as functions of the local Richardson number. The results of a numerical 
simulation of the Thorney Island Trial 008 are in good agreement with the experimental data. 

1. Introduction 

In developing a general numerical program for fluid dynamic computation 
one uses a numerical method that consists of a finite difference procedure for 
solving the momentum and continuity equations with additional equations rel- 
evant to the modelling techniques and the problem at hand. The present model 
is based on the Patankar and Spalding method [l] which uses the continuity 
equation as a pressure-correction with a subsequent continuity-satisfying 
velocity field and is similar to the model used by Deaves [ 2,3]. 

This procedure is basically designed for stationary problems but has also 
been applied to transient phenomena [ 4,5 1. Here we have extended the method 
to a three dimensional transient flow situation. In particular, we have consid- 
ered the spreading of a heavy gas in the atmosphere. Gravity related terms are 
included in the equations without the use of the Boussinesq approximation 
which has been applied by Riou et al. [ 61. The diffusion coefficients are mod- 
ified through empirical factors given as functions of the local Richardson num- 
ber [ 71. Constants used in these modifying functions are taken from a two- 
dimensional computation which has been verified through comparison with 
wind tunnel tests [ 51. 
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2. The system of equations 

2.1 The basic equations 
The transient isothermal release of a gas into the atmosphere may be 

described by at least five differential equations. We need two mass conserva- 
tion equations, one for the total mass and one for the mass of the released gas. 
Conservation of momentum requires three equations, one for each direction in 
space. 

The flow is assumed to be turbulent and the variables represent time-mean 
values. Several terms in the equations above are time averaged quantities of 
the fluctuating part of the different variables and have to be expressed as func- 
tions of the relevant variables. 

Depending upon the model chosen, we may have to introduce new variables 
which require additional equations to be solved, from the simple algebraic 
expressions to the more complex differential equations. 

In our case we chose the equations using the k-e model. Thus two additional 
differential equations are used, one for the conservation of turbulent kinetic 
energy and one for its rate of dissipation. 

All these equations can be written in the following general form 

where @ represents the general variable, r@ is the diffusion coefficient, and S, 
the source term. 

The particular form of the diffusion coefficients and source terms are given 
in Table 1. 

The pressure is reduced with respect to the atmospheric hydrostatic pressure 
giving the gravity term in the vertical momentum equation proportional to the 
density difference. 

The production of turbulent kinetic energy P is expressed as 

In addition to P, turbulent kinetic energy is produced or reduced due to density 
fluctuation with a term proportional to gp’w’. When p is substituted with the 
concentration c through the relation given below and the term is modelled as 
a gradient diffusion term the buoyant production term can be given the form 
shown in the table below. Corresponding terms with respect to buoyant pro- 
duction have been neglected in the equation for the dissipation. The result of 
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TABLE 1 

Diffusion coefficients and source terms 

Equation 

Mass conservation 

Concentration 
(mass fraction) 

x-momentum 

y-momentum 

z-momentum 

Turbulent kinetic 
energy 

Dissipation 

9 

P 

k 

% 

0 

0 

ap _- 
ax 
ap 

-ay 
-g- (P-p,)g 

p++r&& A-Pa ac - - 
Pk- P, 82 

r /Pr, 

r 

r 

r 

r lpr, 

this approximation will probably give a small error which is partly corrected 
using diffusion coefficients as functions of the Richardson number. 

The diffusion coefficient is assumed to be given by 

r=C,pk2/c 
1 

l+plRi 

The influence of the density stratification upon the mixing process is repre- 
sented by the last factor in the expression above and is similar to the one used 
in Ref. [ 71. It is given as a function of the local Richardson number 

Ri= -g (l/p) (aplaz) 
( aujaz) 2 

The Prandtl/Schmidt number Pr, is expressed as 

Pr, = ati 
l+J$Ri 
1 +/12Ri 

The values of the constants appearing in the expressions are given in Table 2. 
The constants are given standard values except forp, and/?, which are found 

from a two-dimensional simulation of a stationary release of heavy gas where 
a fence was placed some distance downwind from the source [ 51. The result 
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TABLE 2 

Values of constants 

CO 

0.09 

Cl 

1.44 

G 

1.92 

P* 

5 

P2 

25 

a, ak 

0.7 1.0 

ff, 

1.3 

of this calculation was compared with experimental data from a corresponding 
wind tunnel test. 

In addition to the differential equations we have the following relations 
between the cloud densityp, mass fraction c and the volume concentration c,,~. 

P=Pa [l+cW,/~,--1H -I 

c vo1= c P/P, 

where R, and R, are the specific gas constants for the released gas and air 
respectively. 

2.2 Boundary conditions 
The domain of calculation is given as a rectangular box (Fig. 1) with one 

axis along the horizontal mean wind direction (x-direction). Assuming a con- 
stant wind direction during the spreading, the flow will be symmetric to the 
plane ABFE, and we consider therefore only half of the space influenced by 
the released gas. Along this symmetry plane we use U= 0 and d/dn=O. 

On the opposite plane DCGH and the upper boundary EFGH we have the 
same requirements in addition to w=O. On the upwind boundary ABHE we 
use an input horizontal velocity profile for u while IJ = 0 and w = 0. 

On the downwind boundary we assume the horizontal gradients to be 
negligible. 

On boundaries such as ABCD, the velocity is set equal to zero. For the other 
variables we use a/an = 0 and k = ~/0.3, where r is the shear stress. 

Fig. 1. Computational domain. 
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Fig. 2. Grid system in the vertical plane. Control volumes for scalar variables. 

For points within the flowfield but in the immediate neighbourhood of solid 
boundaries the dissipation is given by E = (2%” k312/d, where d is the distance 
from the point to the boundary. 

3. Numerical solution 

The equations are discretized using the control volume method and a stag- 
gered grid for the velocity components are used. 

The convective terms are evaluated using an upwind scheme, while the dif- 
fusion coefficients are interpolated assuming the inverse value to be linear 
between the grid points. 

The continuity equation is transformed into a pressure correction equation 
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Fig. 7. Position of the measuring stations. 

according to the numerical scheme given by Patankar and Spalding [ 11. This 
tranformation is based upon a simple relation between the deviation in the 
velocity and pressure field. 

3.1 The solution procedure 
The method of solution is based upon the SIMPLE (Semi Implicit Method 

for Pressure Linked Equations) algorithm [ 11. From an assumed pressure 
field the momentum equations are solved. Through the continuity equation 
the velocity and pressure are corrected until the equations are satisfied. Then 
the other equations are solved. 

4. Simulation of the Thorney Island Trial 008 

4.1 Input conditions and basic assumptions 
The input velocity profile is assumed to be a logarithmic profile with a veloc- 

ity of 2.40 m/s at the height of 10 m, and the roughness height is assumed to 
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Fig. Sa. Concentration as function of time at the height of 2.4 m. Numerical simulation compared 
with experimental data. Location coordinates (350,250). 
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Fig. 8b. Concentration as function of time at the height of 0.4 m. Numerical simulation compared 
with experimental data. Location coordinates (350,250). 

be 0.01 m. The domain of calculation spans the volume 260 m x 80 m x 33 m 
with the corresponding number of grid points equal to 23 x 13 x22. This is 
shown in Fig. 2. We consider in this case a release of heavy gas and the main 
part of the cloud will be near to the ground and the large density gradients 
found here. In this region we therefore use the smallest grid dimension in the 
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Fig. 9a. Concentration as a function of time at the height of 2.4 m. Numerical simulation compared 
with experimental data. Location coordinates (400,300). 
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Fig. 9b. Concentration as a function of time at the height of 0.4 m. Numerical simulation compared 
with experimental data. Location coordinates (400,300). 

vertical direction equal to 0.5 m. The smallest grid dimensions in the horizon- 
tal plane is 11.5 m in the downwind direction and half this value in the cross 
wind direction. The grid dimensions are too large to give a detailed description 
of the structure of the cloudfronts where the gradients are large, with respect 
to both the velocity and the concentration. 

The tent containing the initial volume of gas in placed approximately 50 m 
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Fig. 1Oa. Concentration as a function of time at the height of 2.4 m. Numerical simulation com- 
pared with experimental data. Location coordinates (400,400). 
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Fig. lob. Concentration as a function of time at the height of 0.4 m. Numerical simulation com- 
pared with experimental data. Location coordinates (400,400). 

from the upwind boundary and is assumed to be a rectangular box with sides 
equal to 11.50 m and height 13 m. The density of the ambient air was assumed 
to be 1.20 kg/m3 while the density of the released gas was given as 2.06 kg/m3. 

4.2 Results and conclusions 
With the given velocity profile as input value at the upwind boundary the 

velocity field was calculated before release. 
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Fig. 11. Velocity components in a vertical crosswind plane 10 m behind the center of the initial 
gas column, x= 10, 17.5 s after release. 
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Fig. 12. Horizontal velocity components at the height of z= 0.5 m, 17. 5 s after release. 

Figures 3 and 4 show the volume concentration in the cloud, at different 
times after the release, given in the vertical symmetry plane y=O. Figures 5 
and 6 show the same release viewed from above giving the volume concentra- 
tion at the height of 0.4 m. Notice the differences in scale between Figs. 3 and 
4 and between Figs. 5 and 6. 

The calculations show that the dense part of the cloud is driven out from the 
center of the cloud where air is drawn down due to velocity field set up by the 
collapsing gas column. Some time after release we observe that the regions of 
the higher concentrations are found some distance away from symmetry line. 

After 60 s the cloud has reached the boundary of the computational region 
and the calculations will probably give too high concentrations in the areas 
close to this boundary. 

Figure 7 shows the coordinate system used in the calculations in relation to 
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the position of the measuring stations relevant for Trial 008. The results of the 
calculations are compared with the experimental data in Figs. 8-10. 

Figure 11 shows the velocity components in a vertical plane normal to the 
mean wind direction at the position x = 10. Near the cloud edge a vortex is 
found, but the resolution of the grid is too small to give a detailed picture of 
the front structure. 

The horizontal velocity components are shown in Fig. 12 in the plane 0.5 m 
above the ground. At this height the cloud has a large influence on the local 
velocity field, but as Fig. 11 shows, at the height of 3 m the effect is rather small 
indicating a thin cloud down on the ground. 

The resolution of the grid system is too small to predict the shorter tran- 
sients shown by the data. The mean concentrations and the arrival of the cloud 
is, however, fairly well predicted especially for the lower parts of the cloud. 
Higher up above the ground the predictions are not so good. 

This may be due to the fact that the mixing process is described by very 
simple relations and, thus only some parts of the cloud can be properly modelled. 
The upper part of the cloud is also more sensitive to changes in the windfield, 
and this effect is not included in the model which assumes a constant input 
velocity profile. 

The computer program has here been applied to a transient release on a flat 
terrain without obstructions. It is, however, possible to include buildings and 
fences in the flowfield and thereby simulate the releases of Thorney Island 
trials Phase II. 
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List of symbols 

c 
c vol 

.k? 
k 
P 
P 
Pr 
R 
Ri 
S 

concentration (mass fraction) 
volume concentration 
acceleration of gravity 
turbulent kinetic energy 
pressure 
production term 
Prandtl/Schmidt number 
specific gas constant 
Richardson number 
source term 



230 

time 
horizontal velocity component in x-direction 
horizontal velocity component in y-direction 
vertical velocity component 
horizontal coordinate in the main wind direction 
horizontal coordinate normal to the x-direction 
vertical coordinate 

diffusion coefficient 
dissipation 
density 
shear stress 
general variable 
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